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C O N V E R G E N T  L A M I N A R  F L U I D  F L O W  

B E T W E E N  T W O  R O T A T I N G  D I S K S  

E.  V .  S e m e n o v  UDC 66.067.5 

A stationary flow from the periphery to the center in a hollow between two coaxial, closely 
located rotating disks is studied by the iterative method of solving a system of equations of the 
dynamics of a viscous incompressible fluid. The existence and uniqueness of the approximate 
solution are shown. 

The specific feature  of the geometrical  s t ructure of hollows between two rotat ing disks or cones in 

various rotor machines (separators, centrifuges, and total-head disks) is a comparatively small  (up to 0.01) 
ratio of the channel height to the hollow radius. In studying the flow in the interdisk channel within the 

framework of the assumptions of a boundary  layer, this circumstance allows one to simplify the initial set of 
equations of the dynamics  of a viscous incompressible fluid, as is done for a flow in a slit channel. 

The specific features of convergent fluid flows between two rotating, closely located disks and cones 

are analyzed in [1-5], where one algori thm or another  is used as a method of quanti tat ive analysis of the 
equations of motion,  the velocity and pressure fields are calculated in detail, and convergence of the solutions 

is estimated. However, the problems of correctness of the approximate solutions obtained were omit ted  in 

these studies. 
I t  is convenient to analyze tile specific features of a fluid flow between two disks of radius r0 that  

rotate  with the same or different angular velocities with the use of the cylindrical coordinate sys tem (r, 8, 
and z) rigidly connected to one of the disks. For definiteness, without loss of generality of the formulation of 

the problem, we consider that,  together with the fluid, the disks are suddenly induced into ro ta t ion  with a 
constant angular  velocity w; the fluid enters  a narrow gap between the disks at the distance r0 over the entire 

circumference and  is then  removed through a round orifice at the distance rl < r0 (Fig. 1). Let  u and v and 
w be tile radial and relative circumferential and transverse components of the fluid velocities, respectively, p 

be tile pressure, p be the density, and ~ be the kinenmtic-viscosity coefficient. Locating the coordinate  origin 
on the rotat ion axis in the  middle between the disks, one can adopt  the conditions of fluid adhesion to the 

channel walls as the boundary  conditions: 

u = v = w = O  for z = •  r l < r < r 0 ,  (1) 

where h is the dis tance between the disks. Because the fluid moves toward a hollow between the disks from 
the periphery at a pressure exceeding the discharge pressure, we adopt  the additional boundary  condition 

o 2 p(r , z) = (2) 

Making a compara t ive  estimate of  the viscous terms in the Navier-Stokes equations, for the flow 

considered, in the selected coordinate sys tem we obtain approximately the system 
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Fig. 1. Scheme of fluid motion between two rotating disks. 
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By virtue of the symmetry of the velocity field with respect to the plane z = 0, we choose 

Ou Ov 
- - 0 ,  w = O  for z = O ;  

Oz Oz 

(6) 

(7) 

(8) 

u = v = w = O  for z = h / 2  (9) 

instead of the boundary conditions (1). 
In addition, if l is the characteristic longitudinal dimension of the disk (for example, l = r0), the 

transverse component of the flow velocity is w = O ( u h / l )  according to (6). Then, comparing Eqs. (3) and 
(5), we conclude tha t  if h / l  << 1, we have ( O ~ / O z ) / ( O a 2 / O r )  << 1; consequently, we have approximately 

= (I)(r) for the dynamic pressure. Hereinafter, this circumstance is effectively used to show tha t  the 
iterative procedure of the asymptotic solution of system (3)-(6), which is in agreement with (2), (8), and (9), 
is correct. 

We now pass to the dimensionless quantities 

r = lr ' ,  z = lx ,  u --- V . u ' ,  v = V . v ' ,  w = V . w  I, 

= v.2  ', l = v .  = 

Omitt ing the primes, we rewrite Eqs. (3) and (4) in dimensionless form 
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02u O~ 02v 
Ox 2 = U + -~r '  Ox 2 = V. 

The boundary conditions (8) and (9) can also be writ ten in dimensionless form 

Ou Ov 
- -  = 0 ,  w = O  for x = O ,  

Ox Ox 

u = v = w = O  for x = #  

where # is the Ekman number. In addition, the conditions 

r i u(r ,  x )  dx = - q l ,  

0 

(~ = h ( . d . ) ' 1 2 / 2 ) ,  

q)(ri,  z)  = 0 

(io) 

(li) 

(12) 

should be satisfied [ql = Q V , 1 1 - 2 / ( 4 7 r ) ,  where Q is the fluid flow rate]. 
To construct an iterative algorithm of the solution of the problem, we integrate Eqs. (10) twice over 

x with allowance for (11) and (12): 
t t  x t t  x 

x 0 x 0 

where u ~ = 0.5~5'(x 2 -/z2).  
According to (12) and (13), the dynamic pressure is deternfined as a solution of the integTal equation 

t t  t t  x 

.f 
0 x 0 

whence 
It  t t  x 

0 x 0 

The transverse velocity w is found from tile contimfity equation (6): 

w - - u r  dx; 
r O r  

0 

we note that, according to (12), the boundary conditions (11) for w are satisfied. 
Because the velocity field, the pressure, and the boundary conditions for the velocity and pressure 

components at the entrance of the gap are found from Eqs. (13) and (14) in this formulation of the problem, 
its solution has an asymptotic character. 

According to the iteration method and formulas (13) and (14), for the nth  and ( n +  1)th approximations 
we have 

t t  /x x t t  x 

' I ) : ( r )=  3 (_~ S i /  ) 0 S i  -~5 - -  - U n d x 2 d x l  d z  , un+l = un - U n d x t  dx,  

0 z 0 x o (15) 

~ x 

x 0 

where U~ = u~ Oun/Or + w~ Ou=/Ox - v 2 - 2v~, 

~n(x 2 - tt2)/2, and U0 = V0 = 0 (n = 0, 1 . . . .  ). 
v~ 

.g 

1~ i W n - -  - -  t tn 'F  d x ,  
r Or 

0 

= u~, Ov,, /or + u . . vUr  + wn OvUOx + 2~,,, u~ = 
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If the laminar flow is assumed to move as a quasirigid body in the zeroth approximation,  we obtain 

+'o = 3 q l / @ r )  (16) 

according to (15). In correspondence with (15) and (16), we have 

+'1 = ( 3 / / ) [ q g r  + 6q /(35r3)], = u0 ,  v ,  = o, w ,  = 0 

in the first approximation and 

u2 = [3ql/(2#3r)l(x 2 - #2), v2 = [-ql / (41t3r) l (x  2 - #2)(5#2 - x2), w2 = 0 

in the second approximation, i.e., according to the adopted scheme, the nonzero values of the circumferential 

and transverse flow velocities are determined, beginning with the second and third stages of iterations, 

respectively. 
Thus,  with one-place accuracy, we arrive at the calculation formulas for a divergent flow of a fluid 

obtained by the method of expanding the solution as series in inverse powers 7" for a divergent laminar (small 
values of # and ql) flow [6]. Substi tuting the found values of u and v into the right sides of relations (15), 
we find the third approximation, which is omit ted here because if its cumbersome form. In the general form, 
the s t ructure  of the calculation formulas of flow kinematics of in the n th  approximation (n partial  sums) has 

the form 
x 

un(r, x) = qku'~k(X)r2k----------i--' vn.(r, x) = qkVnk(X)r2k_---------T--, w = 2 ~-'~(k - 1)q k -~'unk dx,  (17) 

k = l  k = l  k = l  0 

i.e., the partial sums are the functional series that are parametr ic  relative to r and power relative to x. 
Determinat ion of the fourth- or higher-order iterations in an explicit form is a quite complicated problem. 
However, higher-order approximations polynomial in x can be found with the use of modern  languages of 
symbol programming as a result of an explicit multiple integration; this makes it possible to estimate both  
the convergence and the speed of convergence of the resulting iterative solution. 

The calculation results for the longitudinal component of the flow velocity over the three approxima- 
tions with one-place accuracy are in qualitative and quanti ta t ive agreenmnt with the da ta  for the divergent 

flow regime (Fig. 2). 
In studying the convergence of the iterative calculation procedure, we confine ourselves to the case of 

a slow quasicircular flow regime, i.e., we assume that the parameters  # and ql are not large. With  allowance 
for the fact that  the nonlinear terms in expressions (7) for U, V, and iV are the quantities of the same order 
of smallness, to simplify the substantiation of the convergence of iterations, we retain in (7) only convective 

terms that  contain the velocity products.  Then,  we obtain approximately 
t t  x t t  t t  x 

3(#2 - -  x 2 )  / V n  dx2 dx + u ~ 

o o = o ( i s )  

V n + l = - / / V n d x l d x ,  

x o 

where Un = -2vn  - v2 / r ,  Vn = 2un + u~vn / r ,  u ~ = q(x 2 - #2) / r ,  and q = 1.5ql /# 3 is the Rossby number. 
In contrast to [7], where the s ta t ionary divergent flow regime for a fluid between two infinite disks is 

investigated, for tim flow-velocity field, not only tim centripetal  v2/r  but also the rotary u v / r  acceleration is 

taken into account in the computational schenm (18). 
Hereinafter, in constructing the majorant  for the partial  sums (17), we take into account,  that,  for a 

slow flow regime (small Eknmn and Rossby numbers), according to (3) and (4) the maximum absolute values 
of the longitudinal and circumferential fluid-velocity components  are reached in the middle of a slit (x = 0). 

By virtue of (18), we have 
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Fig. 2. Structures of the longitudinal component of the flow velocity for r 0 = ro/h = 1O0: curves 
1 refer to r = 0.1r/~ and p = 1.12, curves 2 to r = 0.5r~) and # = 1.58, and curves 3 to r = 0.9r~) 
and lL = 1.69; solid curves refer to q = 7.04 (a) and 35.12 (b), d ~ h e d  curves to q = 9.96 (a) and 
49.80 (b), and dot-and-dashed curves to q = 12.I8 (a) and 60.92 (b). 

/z x it r x # x 
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Hereinaf ter ,  in the  express ions  for Un and V,~, we assume tha t  u,,, = un(0) ,  and  vn = vn(0) (n = 0, 1 , . . . ) .  

Here,  owing to (18) a n d  (19), the inequalities 

lu,~+tl ~< #212.5(21~,d + v,~/~-) + q?d, I'~§ ~< #2(2lunl + lu~v,l?r) 

hold. Omi t t i ng  the  s igns of  the modulus  and amplifying the  inequalities,  we ob ta in  

'//~n+l < 5 # 2 ( V n  -~- V2/7" + q/T), Vn+I < 2#2('U,, + u~v~/r ) .  

Fur ther  amplified, the  inequali t ies take the form 

Un+~ < ~(q/," + V~ + V~/,'), ~,.+~ < ~(u,~ + u.~,~/~), ~ = 5~ 2. (20) 

Here assuming  tha t  v0 = 0 and u0 < rlq/r, for n ~> 0 we have 

'ul < qrl/r, vl  < qr12/r, u2 < (qrl/r)(1 +rl 2 + qr14/r2), v2 < (qrl2/r)(1 + qr12/r2), 

u3 < (q'rl/r)[1 -b ~2 q_ qr]2(1 -4- 2~2)//r 2 q- q2~4(1 -4- 2r /2) / r  ~ + q3v/8//r6], 

v3 < (qvl2/r)[1 + v/2 + q~/2(1 + 2'q2)/r 2 + q2@(1 + 2 ~ 2 ) / r  4 -4- q3@/r6], 

u4 < (qvl/r)[r}(1 A- v/2) + qr/3(2 + 4'i] 2 + @ ) / r  2 -4- q2~5(1 A- 27]2)(3 + 2~2) / r  4 

+q3~7(3  + 1 0 ~ 2 + 8 ~ 4 ) / r  6 + 2q41/9(1 + 5 ~ 2 + 5 ~ 4 ) / r  s 

+ @@1(1 + 27/2)(1 + 4~12)/r 1~ + 2q6r/15(1 + 2r/2)/r  12 + q7r/19/r14], 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , etc.  

In  the adop ted  a s s u m p t i o n s ,  one can consider tha t  qTl2/r 2 < 1, where  77 < 1. 

(21) 
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As follows from formulas  (20) and the analysis of the structure of the coefficients on the right side of 
(21), the coefficients ak(~?) and  ak+l (7/) for (qrl2/r2) k and (q~?2/r2)k+l do not depend explicitly on the index k 

and  are magnitudes of the same order; we note that  these coefficients first g-row monotonically, reaching the 

greates t  value of am (m ~ 2 '~-1, where n is the order of iteration) and then decrease. It  is clear that  r2/(q'rl 2) 
can be selected so large t ha t  r2/(q~l 2) > lim (ak+l/ak) as r --~ oc, k ~ co, and n --* ~ .  Whence, we have the 

convergence of the sequences un(O) and vn(O) as n ~ oc and, hence, the uniform convergence of the par t ia l  

sums un(x) ,  and v~(x) for x c [0, #] to the continuous solution of the boundary-va lue  problem formulated in 
the  range of values of qT12/r 2 < 1 and 7/< 1, where q = 6Q/(rrwh 3) and 7/-- 5# 2. 

Thus,  within the f ramework of tim formulation of the problem the value of the Ekman criterion z / <  1 

t ha t  is common in the flow region and the value of the Rossby criterion q < (r/~)) 2 at  each point of the flow 

is a sufficient convergence condition for its solution. 

Since from the proof  of convergence of the iterative procedure follows the  correctness (for fixed values 

of the parameters  r,  q, and  ~7) and e l0 ,  #]) of the norms [Iv[I and Ilull in the  metric space of continuous 

functions on the segment [0, #], which are defined in the form [8] 

[lull = ma~xlu(x) l ,  Ilvll = ma- 'clv(x)l ,  x e [0 ,~] ,  

the  resulting iterative solution converges in norm in the space C[0, #]. Wi th  a correct  uniform convergence of 

t im expansion of the solution of the problem, for example, for u(r, x) ,  it follows tha t  this solution is unique. 

Let  uo = u ~ and v0 = v.  ~ be  the initial distribution of the flow velocities (u~ and  v. ~ are functions tha t  have 
the  same propert ies as u~ By virtue of (13) and (t5),  we have 

/.t x /.t /~ x 

U n + l  ~-- - / / V n ( u ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  O, 

x 0 0 x 0 
(22) 

= - u. ,  v.)  dxl  dx, n >~ O. 

x 0 

Then,  under the assumpt ion  tha t  u ~ u~ and v. ~ belong to the space C[0,/a], similarly to (21), in the field of 

the  santo flow parameters  one can construct  the majorants  for u and v in the  case where the flow-velocity 

profiles at the entrance of the  channel have the form u0 = u ~ and v0 = v ~ Since u and v are the uniformly 

convergent series, for the longitudinal component  of the flow rate one can write 

' + a~, (23) ~tn+ 1 = (7 n 

where a'~ depends only on u ~ and a~ on u ~ and u ~ and v ~ (or only on u ~ and v~ 
Let the sequence of part ial  sums ul,  u2 . . . .  defined in a certain domain  S(r ,  x) uniformly converges 

on the set S. According to the Cauchy criterion of uniform convergence of the sequence, this means tha t ,  
for an arbi t rary  r > 0, there is a number  v that  does not depend on (r, x),  such that  it follows tha t  

[uk(r,x)  - -u l ( r , x ) l  < ~ f rom k > v and l > u for all (r ,x)  E S [8]. Here, since the number n of the par t ia l  

sum [the order of approx imat ion  (I7)] can always be selected so large tha t  n > u, k, and l [then, Iuk - ull 
would depend only on u ~ by vir tue of (23)], then the solution of the problem t h a t  results from the t ransi t ion 

to the limit as n --* cc in (22) is unique. 
In conclusion, it should be mentioned that  the results of the theoretical  analysis of a fluid flow in a 

narrow gap between two disks tha t  ro ta te  with the same velocity when the fluid is supplied from the per iphery  

were compared by R. Adams,  W. Rice, and other authors (see, e.g., [1, 2, 4]) wi th  the experimental data;  for 
this purpose,  the pressure was measured along the flow between the disks. Sat isfactory agreement between the 

exper imenta l  and the theoret ical  results has been obtained in the range of var ia t ion of the flow parameters ,  

which shows the correctness of the chosen model in the studied range of flow parameters .  
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